22,572 research outputs found

    Local and nonlocal parallel heat transport in general magnetic fields

    Full text link
    A novel approach that enables the study of parallel transport in magnetized plasmas is presented. The method applies to general magnetic fields with local or nonlocal parallel closures. Temperature flattening in magnetic islands is accurately computed. For a wave number kk, the fattening time scales as χ∥τ∼k−α\chi_{\parallel} \tau \sim k^{-\alpha} where χ\chi is the parallel diffusivity, and α=1\alpha=1 (α=2\alpha=2) for non-local (local) transport. The fractal structure of the devil staircase temperature radial profile in weakly chaotic fields is resolved. In fully chaotic fields, the temperature exhibits self-similar evolution of the form T=(χ∥t)−γ/2L[(χ∥t)−γ/2δψ]T=(\chi_{\parallel} t)^{-\gamma/2} L \left[ (\chi_{\parallel} t)^{-\gamma/2} \delta \psi \right], where δψ\delta \psi is a radial coordinate. In the local case, ff is Gaussian and the scaling is sub-diffusive, γ=1/2\gamma=1/2. In the non-local case, ff decays algebraically, L(η)∼η−3L (\eta) \sim \eta^{-3}, and the scaling is diffusive, γ=1\gamma=1
    • …
    corecore